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In the investigation of boundary problems for a rarefied plasma the
occurrence of stationary periodic solutions.[1-3] has been noted on
more than one occasion. Since the existence of such solutions leads

to a finite change in certain plasma parameters for infinitesimal chang-
es in other parameters, the region of periodic solutions is treated in a
series of papers as an instability region [3, 4], However, as far as the
authors are aware, arbitrary assumptions have been made in existing
papers regarding the distribution of charged particles, For example, in
Bohm's article [3] a monovelocity model was proposed, and in the pa-
pers of Auer, Hurwitz, Mclntyre and others, an arbitrary distribution
of trapped particles was introduced,

Consequently, it is of interest to carry out a strict investigation of the
question of whether spatial periodicity exists in a stationary rarefied
plasma. The present paper finds criteria for the appearance of spatially
periodic solutions for the self-consistent problem in the zero-th approx-
imation in L/I (L is a characteristic dimension of the system, I is the
mean free path of plasma particles).

For the sake of simplicity, in the calculations we
shall confine ourselves to a one-dimensional boundary
problem for a rarefied gas (composed of electrons,
ions, and neutral particles) filling the space between
two infinite parallel plates. We shall neglect the ef -
fect of magnetic fields. The potential distribution is
described by Poisson's equation
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Here x is the coordinate reckoned from one of the
electrons, pg i is the electron or ion density, respec-
tively, fe,i are the distribution functions of electrons
and ions, respectively. The electron and ion distribu-
tion functions satisfy the kinetic equations
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Here me,j are the electron and ion masses, re-
spectively, Jg j are the collision integrals for elec-
trons or ions. As boundary conditions we shall intro-
duce given electrode potentials (g (0) = 0, ¢ (L) = @z,

L is the interelectrode distance) and equations describ-
ing the particle distributions on the electrodes.
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Fig. 1

It was shown in [5] that in the zero-th approxima-
tion in L/l a monotonic potential distribution in an in-
terelectrode space filled by a rarefied gas of charged
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_ particles is possible for a given electrode potential

difference only when the conditions
p=p,—n, =0, do/dx=0,

(3)
0<dp/dp<co for @=gp,.

are fulfilled for a specific value of potential gx (0 <
< ¢ <91 .

Here the potential distribution has the appearance
shown in Fig. 1: the potential is practically constant
over the whole space and is equal to ¢y, with the ex-
ception of narrow laycrs in the neighborhood of the
electrodes of width of the order of the Debye-Hiickel
radius Ap, in which a sharp change of potential occurs
from 0 to ¢ close to one ¢lectrode, and from ¢y to
@1, close to the other (here and in what follows, to be
specific, we shall treat the case for ¢, < 0).

For gas parameters with ¢ = ¢y, the derivative
dp/de becomes infinite, and the last condition of in-
equality (3) is not fulfilled. The potential distribution
in this limiting monotonic case is shown in Fig. 2:
with the exception of a narrow boundary layer close
to the coordinate origin the potential is strictly con-
stant and equal to ¢y. Further change of the gas pa-
rameters leads to a nonmonotonic potential distribu-
tion. The conditions for it to be periodic are found
below.

In order to do this we must examine Poisson's equa-
tion (1). :

We shall assume that the plasma has a periodic
structure (Fig. 3) in the neighborhood of the limiting
monotonic configuration, In this case we must distin-
guish between particles trapped in potential wells and
those which are not so trapped.

The integrals of motion for electrons ¢ and for
ions &; satisfy the conditions

€ >> — €Pmin, — €QPmin > & > — €Pmax s
(8¢ =Yom vt — @ (7)),

£; 2> ePmax, €Pmin < & < €QPmax»

(e; =Yam? 4 eq (z)).

Here the first inequalities correspond to untrapped
and the second to trapped particles, ¢¥pyin and ¢max
correspond to the minimal and maximal values of po-
tential in the interelectrode space. In the zero-th ap-
proximation in L/l under consideration the distribution
functions depend only on the integrals of motion &¢ or
&j.

Denoting the distribution function for untrapped
particles with an index ¢, and for trapped particles
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with an index w, we may write down expressions for
the electron and ion densities for X = Xy jp in the form
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Here /i (e) and f. ;" (e) are the distribution functions
for particles with vx > 0 and vx < 0, respectively, in
the zero-th approximation in L/l; they are assumed to
be already integrated over vy and vy. Introducing the
following symbols

fec+ (8) "f“:}ec‘ (8) = ’fec (5), ficJr (8) -+ fi«:~ (5) = ftc (e)!
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and making an analytic continuation of fg. and fj, to

the region of the integrals of motion ¢4, €j, correspond-

ing to trapped particles, we write Egs. (4) in the form
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In order to carry out further transformations, it
is convenient to pass to the variables % =g, ; - ep.
respectively, in Egs, (6). Then

-

Pe = Vlr;e {So fec (tz - 8(p) dt + OS Fe (t2 - e({))‘dt}

(.="Ve (P~ Ppin))s (7)

’ 0‘0 . 7:’-
o= i {§ Fio (8 + eg) dt + 5 Fi( -+ eq)dt}
M)
(Ts = Vm . (cont'd)
Here
Fe,i:fs,i,w’—fe,i,c. (8)

Assuming that the amplitude @unax — Pmin is small
close to the limiting monotonic configuration, we may
expand Egs, (7) in a series in powers of (@max — Pmin)".
With an accuracy to half-integral powers of ®min—@
we have
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Fig. 3

Moreover, since the difference ¢ — ¢y is small,
where ¢y is the constant potential of the limiting mon-
otonic configuration, we may expand pe, Pj in powers
of Qmin —@,, assuming that the distribution functions
have been analytically continued to the valuese, = —eq,
and g; = ep,. With an accuracy to linear terms, we ob-
tain
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— = {Sof (—ep)dt -+ e (@ = — @) §o [Zee®] a +
+ Ve (9 — i) Fe <~e<pk)} (1 =19 — eqy) s
o=
= {SO/ (5 4 e9,) dt + ¢ (Gmin — ;) (So [Pc9] ary
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We note that Fg and Fj represent the difference in
values of the distribution functions for trapped and un-
trapped particles, respectively, at the boundary of the
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potential well, After setting pe and pj from Egs. (10)

in Poisson's equation, we find that it assumed the form

28 = 2 @min—By) + b (@~ Qi) + ¢ @max — @) "+ (11)
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Since the first terms in Egs. (10) are equal to pe(vk)

and pj (¥k), on being inserted in Poisson's equation
they cancel out in accordance with the first condition
of (3). Integrating Eq. (11) from ¢pjn to ¢, we obtain

/29 = aA (9 — Pmin) + /5 [0 (9 — Pmin)” — ¢ (Pmax — @) +
+ ¢ (Pmax — Pmin)"], (A = Qin — Pi) (14)

Hence we find for the amplitude 4 = Pmax— @, setting
P = Pmax,

A= AL A,

Ag’:: -—%f‘;—c(b-;.c#o, signa = —sign{¥+¢)) . (15)

Fig. 4

The amplitude is proportional to the square of A,
which confirms the validity of the assumption that the
amplitude is small for small departures from the lim-
iting monotonic configuration, and the validity of the
expansion in small parameters made above. Integrat-
ing (14) from @in to ¥max, We obtain the following
expression for the wavelength A:

A= hoA", Ap=
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Thus the wavelength is proportional to the root of
A. Necessary conditions for the existence of periodic
solutions are

9" | P=Pmin >0, 9" !"‘:‘max <0.

Moreover, an odd number of points of inflection
must lie in between a minimum and a maximum, i.e.,
the equation p(¢) = 0 must have an odd number of roots.
The first two conditions lead to the inequalities

al + ¢4 > 0,
aA + A" < Oor o> 2b,¢> b (17)

Here the value of the amplitude A from (15) has
been employed, It is evident that the condition ¢ > b/2
will be the stronger for b < 0, and condition* ¢ > 2b
the stronger for b > 0.

In order to examine the roots of equation p(¢) =10
it is convenient to write it in the form

g _30—nu_ 3y (1 —ut)'fs
2 - 2 ’

(u= (m—_}m)% CT=57) (18)
with the help of (15).

The roots u, of this equation must satisfy the re-
quirements

0 <Tuy < H, v 1= (1 —v)ul >0.

The examination carried out showed that on fulfill-
ment of the conditions ¢ > 2b and ¢ > b/2 this equation
has always only one root; thus the conditions men-
tioned for the zero-th approximation in L/l determine
the boundary of the region for periodic solutions. This
region is shaded in Fig. 4 (b = 1). We note that the
position of the boundary is determined only by the re-
lation between discontinuities in the electron and ion
distribution functions at the boundary of the potential
wells and is independent of A.

We shall ascertain the behavior of amplitude and
wavelength close to these boundaries. As is clear
from (15), as before, close to the boundary the am-
pli};ude A remains a small quantity of the order of
A2, However, the wavelength begins to increase as
we approach the boundary of this region. Rough esti-
mates show that

b
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The increase of wavelength may facilitate the ex-
perimental detection of periodicity.

The calculations which have been carried out were
confined to terms of the order of half-integral powers
of the amplitude. In the case where the coefficients b

*All the results obtained are immediately applicable
to the case when the plasma potential is positive. To
do this it suffices to take A = ¢, —¢,nax and reverse the
sign of the coefficient @ in (12). The criterion of peri-
odicity expressed by ¢ > 2b and ¢ > b/2.
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and ¢ are equal to zero (for example, if the distribu-
tion functions for untrapped particles pass continuous-
ly to the distribution functions for trapped particles),
it becomes necessary to take into account linearterms,
and Poisson's equation assumes the form

9= a(@—qn, (19)

where a is given by Eq. (12). The solution of this equa-
tion has the form

(p_(pm:A(shVaﬁl) (20)

for a < 0 the solution describes monochromatic peri-
odicity with an amplitude A ~ A and a wavelength in-
dependent of A,

Thus, periodic solutions are allowed only for spe-
cific relations between the distribution functions in
the zero-th approximation for trapped and untrapped
particles. In order to verify whether these conditions
are fulfilled in actual problems, the distribution func-
tions for untrapped particles must be found by means
of the boundary conditions and also the distribution of
trapped particles with the help of the approximate

kinetic equation [5]. The stability of these solutions
and the influence of collisions in the stationary case
still remain open questions,
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